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Abstract—In recent years, the development of systems for
processing and analyzing large amounts of data (so-called Big
Data) has become an important sub-discipline of software engi-
neering. However, to date there exits no comprehensive summary
of the specific idiosyncrasies and challenges that the development
of Big Data systems imposes on software engineers. With this
paper, we aim to provide a first step towards filling this gap
based on our collective experience from industry and academic
projects as well as from consulting and initial literature reviews.
The main contribution of our work is a concise summary of
26 challenges in engineering Big Data systems, collected and
consolidated by means of a systematic identification process. The
aim is to make practitioners more aware of common challenges
and to offer researchers a solid baseline for identifying novel
software engineering research directions.

I . I N T R O D U C T I O N

Big Data systems have become an important factor for
information technology today. Thus, the development of such
systems has become an important field with a significant impact
on software engineering. In current literature, the focus is often
on technical aspects [1] or specific platforms, whereas we take a
different perspective, aiming at the process and methodological
aspects, which have been rarely discussed to date. Knowing and
understanding related issues, however, is important for arriving
at a systematic approach and, in turn, rational decisions in
developing Big Data systems [2]. Such systems are usually
operating at the limits of data processing and technology and
are therefore distributed systems. This class of systems is
well-known to suffer from a variety of concurrency issues
that significantly complicate their development [3]. Moreover,
common approaches for building Big Data systems, such as
the Lambda Architecture [4], call for at least a duplication of
processing paths and hence increase system complexity even
further from a software engineering perspective.

To the best of our knowledge, however, for the time being
there exists no comprehensive survey or otherwise integrated
discussion of specific software engineering challenges that arise
from the development of Big Data systems. Hence, we start by
identifying and discussing these challenges in order to make
practitioners aware of them and give researchers some solid
directions for potential future work in this area. The discussion
we provide in this paper is guided by the collective background
of the authors in engineering such systems both in industry and
academic contexts (e.g., development of an industrial Big-Data-

capable data cross-linking system⇤, a cross-organizational Big
Data analytics platform in PRO-OPT [5]‡, a configurable and
adaptive data processing infrastructure in QualiMaster [6]†),
as well as based on consulting experience and literature. In
line with our experience in engineering such systems, we focus
on information systems for Big Data and exclude technically
oriented Big Data systems such as factory automation systems.
Nevertheless, we are confident that many of the lessons learned
here will also apply in these other contexts.

The remainder of this paper is structured as follows: After
explaining the process we applied to collect and analyze the
challenges in Section II, we present and explain these in the
main part of our paper, Section III. In Section IV, we discuss
the most closely related works on this topic that we were able
to discover. Finally, we round off our paper with a conclusion
and a brief outlook on future work in Section V.

I I . R E S E A R C H P R O C E S S

As depicted in Figure 1, we identified and collected chal-
lenges using a systematic and collaborative process that roughly
required one year.

We started off with a discussion of challenges, problems,
and personal experience during a meeting of the German Com-
puting Society (GI) Working Group on Big Data Architectures
[7]. This was followed by an initial collection of challenges
where the participating authors (the currently active core of
the Working Group) filled a document template 1. Various
presentations and other input from non-permanent members of
the Working Group complemented this initial data collection,
which contained a description and a justification for each
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Fig. 1. Collaborative challenge identification and classification process.

1We used one MS Word document for each challenge with entries for
"description", "experience or support why this is a challenge", and "references."
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challenge, its relationship to Big Data architectures, as well as
personal experience and references to existing literature.

As this collection was driven by experience, we then aimed
at structuring and classifying the initial results according to
common activities of the software development life-cycle and
structured Section III along these phases. This happened during
a face-to-face meeting of the Working Group. The structuring
revealed additional challenge candidates, which were then
assigned to group members for detailing according to a revised
document template. All documents were peer reviewed by
another group member not involved in the initial description
of the respective challenge.

After the original authors had revised the reviewed chal-
lenges, the entire group reviewed and discussed the outcomes
during another face-to-face meeting. This led to an aligned
summary of potential challenges for phase. Afterwards, these
challenges were subjected to another review round including
discussion and revision. As a result, we identified several
candidates as duplicates or as not specific for Big Data systems.
The collection process ended with a revision of the candidate
classification as well as the classification structure.

To summarize the results, all authors individually evaluated
the importance of the candidates and discussed the results
during several online meetings. This was done in a spread sheet
with rows of potential challenges and one column per author.
Candidates with diverging ratings were subject to consensus
discussions, which led either to agreement or, partly, to a re-
classification or clustering of similar challenges. Finally, we
consolidated and summarized the results for this paper.

I I I . C H A L L E N G E S

In this section, we discuss the classification of the challenges
we obtained from the process explained in Section II. Table I
provides an overview of the individual challenges and how we
allocated them to the common software development life-cycle.
In the remainder of this section, we will discuss each identified
challenge as listed in the table and summarize the challenges,
focusing on crosscutting concerns, in Section III-E.

A. Project & Requirements Management
Managing Big Data projects as well as eliciting and man-

aging requirements for Big Data projects is even more chal-
lenging than usual, as novel analysis opportunities may arise
from the available data. Additionally, various interdisciplinary
competencies must interact to process and analyze the data and
deal with potential problems of statistical soundness or data
privacy that may impact the results. In the following, we will
discuss the respective challenges we identified.

Unclear Requirements (PM1). In the development of Big
Data systems, desired outcomes are often unknown at the
beginning as stakeholders can neither imagine the capabilities
and the potential of analyses nor their future desires inspired
by using the system under development [8]. This imposes
challenges on the involved parties as well as the applied
methods: To some degree, this turns requirements engineering
upside down, as data analysts have to explain as early as

Project & Requirements Management
PM1 Unclear Requirements
PM2 Emergence of New Requirements from Data
PM3 Highly Interdisciplinary Teams
PM4 Integration of Hard- and Software Components
PM5 Privacy Implications
PM6 Complex Trade-offs between Quality and Performance
PM7 Prevention of Self-Fulfilling Prophecies
Architecture & Development
AR1 Distribution and Concurrency
AR2 Steep Learning Curves due to Novelty of the Field
AR3 Query-Driven and Evolutionary Design
AR4 Lack of Unified Modelling Support
AR5 Algorithmic Idiosyncrasies
AR6 Duplicated Implementations
AR7 Data Consistency and Availability
AR8 System vs. Platform Development
AR9 Runtime Adaptability and Platform Independence
Quality Assurance
QA1 Challenging Visualization and Explainability of Results
QA2 Non-Intuitive Notion of Consistency
QA3 Complex Data Processing and Different Notions of Correctness
QA4 High Hardware Requirements for Testing
QA5 Difficult Generation of Adequate, High-Quality Data
QA6 Lack of Debugging, Logging, and Error-Tracing Methods
QA7 State Explosion in Verification
QA8 Ensuring Data Quality
Deployment & Operations
DO1 Complex “Elastic” Provisioning
DO2 Complex Monitoring

TABLE I
S U M M A RY O F I D E N T I F I E D C H A L L E N G E S .

possible which analyses are possible and feasible at all or
are better avoided, e.g., due to issues with statistical soundness
(cf. PM7) or data privacy (cf. PM5). Furthermore, as described
below, new requirements and ideas might continue to appear
during realization, testing, and operation of a system, making a
highly agile or even exploratory management and development
approach an absolute necessity.

Emergence of New Requirements from Data (PM2). Ob-
servations from data can give rise to new requirements or
refine existing requirements. This can pave the way for new
functionality or a different realization of some functionality
[8]. Sometimes this can only be realized during operation
of a system, leading to late requirements changes. Hence, it
may be basically not possible to define all requirements before
the actual system is running. Even more challenging, from a
requirements management point of view, is the fact that data
can become a new stakeholder, as new data might facilitate
new analysis opportunities [9]. However, existing Requirements
Engineering (RE) methods that mostly focus on early object-
oriented analysis of a finite data set with a known structure
are not prepared to deal with this situation.

Highly Interdisciplinary Teams (PM3). Creating novel and
successful data analysis systems requires the formation and
management of highly interdisciplinary teams. This involves
integrating technical and data analysis competencies as well as
competencies in, e.g., sociology, ethnography, cognition, psy-
chology, or jurisdiction [8]. Involvement of external consultants
is helpful, in particular when setting up first projects, however,
for long-term success, internal competence is indispensable.
Moreover, the formulation of data analysis tasks is particularly
hard for users who are not data analytics experts and who are



not familiar with common data analysis concepts and algo-
rithms, so this requires more communication and management.

Integration of Hard- and Software Components (PM4).
The setup of Big Data systems often requires integration of
different frameworks, e.g., to implement the Lambda Reference
Architecture [4], [10]. Also, Big Data processing often cannot
be accomplished by software alone. Hardware co-processors
[11], [12] such as Graphical Processing Units (GPUs) are
widely used as a cost-effective, powerful, and scalable plat-
form for various calculation-intensive tasks. Combining hard-
and software-based processing into hybrid systems [11], [12],
[13] is challenging, as it requires teams with broad technical
knowledge ranging from hardware selection or even design
via fast networking technologies to software and integration
capabilities. This adds even more pressure for interdisciplinary
collaboration as mentioned in PM3.

Privacy Implications (PM5). Data analyses using and inte-
grating personal data must be compliant with numerous data
protection guidelines, data licenses (if applicable) and (chang-
ing) laws, e.g., by using encryption, partitioning, anonymization,
de-personalization or pseudonymization techniques, ans may
also be subject to negotiations with works councils [8]. To some
degree, a safe strategy here may be overly restraining, as it may
not always be obvious to legal laymen like developers what
forms of analyses may be allowed with the collected data. Data
protection is also a rapidly developing field, i.e., it challenges
lawyers or even requires specific proactive compliance officers
who monitor legal changes and recognize necessary posterior
changes to existing systems.

Complex Trade-offs between Quality and Performance
(PM6). Carefully applying proven design tactics often allows
scaling traditional information systems in a relatively hassle-
free manner. For Big Data systems, however, the combination
of huge data sets with large-scale distribution and the trade-off
between consistency, availability, and partitioning known as
CAP theorem (cf., e.g., [4]) usually leads to more difficulties
in scaling them. Quite often, this even requires stakeholders
to abandon their expectations of perfect quality as merely
approximate, but faster algorithms or (batch) algorithms with
higher latency can be used. Clearly, this makes it very hard
to predict how a system will behave in terms of throughput
or latency. This, in turn, makes sizing and planning the
deployment of Big Data systems more difficult [14] or even
unpredictable and hence may imply additional prototyping and
testing, e.g., with very high or changing loads (cf. QA4, QA5).

Moreover, in Big Data systems the implementation paradigm
has a significant impact on performance, latency, or quality of
results. For instance, a batch algorithm constrains the degrees
of freedom in the implementation, comes with a high degree
of latency, and is hard to use with current approaches for
performance analysis such as Palladio [15]. The latter often
do not support Big Data frameworks and their properties as
modeling concepts, in particular not for estimating the effects
of exchanging similar frameworks or scaling them [14]. In the
context of cloud based data-intensive systems, these approaches
(like [16]) are still confronted with typical problems, such as

complex model creation for middlewares or resource demands
of rare events.

Prevention of Self-Fulfilling Prophecies (PM7). In order
to prevent misinterpretations of results [17], [18] or even
self-fulfilling prophecies in creating them, the design of data
analysis approaches requires the application of sound scientific
methods. This demands discipline from all involved parties to
prevent data dredging [18] and to properly apply statistical
methods, e.g., by identifying hypotheses, collecting data, ex-
perimenting, and identifying evidence [8].

B. Architecture and Development

Big Data systems raise a number of practical challenges for
architects and system designers alike. The majority of these
challenges is caused by the fact that Big Data systems are
distributed and that the field itself is rather new so that its tools
and frameworks are often evolving rapidly. However, there are
additional challenges specific to their design and development,
as we will elaborate below.

Distribution and Concurrency (AR1). Big Data systems are
pervasively distributed / concurrent as they belong to the class
of systems that cannot process the accruing amount of data
on a single machine [19]. As a consequence, they inherit
all problems already known from the development of such
systems [3], like the difficulties in establishing a consistent
understanding of the system state or dealing with partial
system failures. Hence, we will not reiterate these well-known
challenges any further, unless we identified specific aspects
related to Big Data.

Steep Learning Curves due to Novelty of the Field (AR2).
While traditional information systems typically use a proven
stack of technologies, Big Data systems are very much driven
by the job at hand and hence often force developers to come
up with a novel combination of frameworks and technologies.
Each of these might already have a steep learning curve,
but bringing them together and orchestrating their interplay
is a novel challenge every time. Although reference archi-
tectures, such as the Lambda Architecture [4], [3], and their
understanding have started to mature, more work is necessary
as implementation technologies still suffer from a lack of
standardization, large evolutionary steps of frameworks, or even
the rise of completely new technologies. Consequently, there
exists a lack of in-depth understanding of Big Data architecture
tactics and patterns as well as for implementation stacks and, in
turn, for deploying them to scalable environments, e.g., a cloud.
This causes constant pressure for architects to experiment with
and learn new implementation approaches.

Although the community has been aiming at collecting
Big Data patterns for some time [20], this research currently
remains in a rather immature state and is often based on a few
anecdotal reports (such as blog posts) since there is simply
not (yet) enough publicly available information on how to
successfully build Big Data systems in order to derive well-
established patterns for them. On this basis, it is clearly hard
to predict how an architecture should be defined in order to



address certain goals regarding performance / scalability / etc.
and how to integrate various different processing paradigms.

Query-Driven and Evolutionary Design (AR3). In traditional
information systems, where “merely” the typical create-read-
update-delete (CRUD) operations must be implemented, ap-
proaches such as O/R mapping have matured and designing
the persistence layer of a system has become more routine than
particularly challenging. In Big Data systems, however, data
access and subsequent data processing often generate the core
of the expected value. As these systems usually come close to
technological limits, data handling has a much more profound
impact on the architecture and a query-driven approach is
needed [9]. Even worse: as the desired value is often not clear
in advance (PM1, PM2), the core of architectural design is
often driven by queries discovered after requirements analysis,
by prototyping large parts of the architecture. Thus, major
architectural decisions are often not possible in time or need
to be made in a highly evolutionary manner. Current software
engineering methods widely lack support for the creation of
such “query-driven agile architectures”.

Lack of Unified Modelling Support (AR4). Common model-
ing languages such as the UML or the E/R diagram notation
provide little off-the-shelf support for the use of Big Data
concepts. Although the UML can be extended via custom meta-
models, there still exists a lack of standardized extensions,
let alone experience with their application. Simultaneously,
although there exist various modeling notations for Big Data
tools and frameworks (e.g., pipe diagrams for MapReduce [4],
pipelines for streaming [21], or the DICE UML profiles [16]),
they lack standardization and support from common CASE
tools. Moreover, Big Data applications are often developed in
a very interdisciplinary fashion (see PM3) so that creating
commonly accepted modeling approaches and avoiding a
Babylonian confusion with notations from areas such as Data
Science is clearly another challenge.

Algorithmic Idiosyncrasies (AR5). Big Data frameworks of-
ten require the application of programming paradigms unfamil-
iar to many developers, e.g., MapReduce on immutable data [4].
These (novel) paradigms necessitate a different way of solution
design thinking and often impose limitations on architectural
degrees of freedom. Moreover, Big Data algorithms must be
horizontally scalable (cf. DO1), which generally prohibits or
seriously limits the use of algorithms with more than linear
time or space complexity. For example, limited processing time
(PM6) may imply the use of special versions of algorithms (e.g.,
HyperLogLog), which may lead to a loss in result quality. Here,
the challenge is to balance understandability, result quality, and
processing time for the required design compromises.

Duplicated Implementations (AR6). As it is not always
possible to sacrifice quality for performance, the most popular
Big Data reference architecture, the Lambda Architecture [4],
proposes supporting both in a time-displaced manner. This
comes at the price of implementing functionality twice: once
for the so-called (streaming) speed layer, where time is more
important than quality, and once for the so-called batch layer,
where quality is more important than time. Quite frequently,

the algorithms are different (cf. AR5) and both layers even
need their own specialized persistence so that saving data
is also implemented twice. Sometimes, when special and
complex analyses must be executed, it can become even more
challenging to meet all performance requirements. Here, the
use of a so-called polyglot persistence [22] has become a
common practice. However, it comes at the price of data
and code duplication or even multiplication. Another aspect
regarding sufficiently fast data processing may be the need for
priority lanes, where important data must be “smuggled” into
the processing unit quickly, which again adds complexity to
the design. So the challenge is to realize different versions of
the same algorithms consistently, e.g., based on appropriate
model-based approaches (AR4).

Data Consistency and Availability (AR7). As if implementing
polyglot persistence alone would not be challenging enough, it
comes with consistency problems between different storage
systems; increasing the consistency issues within a single
storage system in usual distributed systems. The intense
discussions around the CAP theorem and the use of “soft
state” in NoSQL databases underline [23] the importance of
this issue. However, these discussions widely revolve around
solving consistency and availability within one persistence
under heavy load [19], not within a zoo of numerous systems
with different characteristics. Consequently, dealing with state
and consistency in polyglot persistence is a challenge that needs
to be tackled urgently.

System vs. Platform Development (AR8). While we typically
speak of Big Data systems, their development often rather
resembles that of a platform in a software ecosystem [24]. This
can have two reasons: (a) Planned development as a platform:
the significant investment for Big Data systems can often only
be justified if a number of applications can benefit from it.
The Big Data system is then designed as a platform from the
beginning; (b) development as a platform due to uncertainty:
Here a specific system is envisioned, but due to significant
uncertainty (PM1, PM2), the development is separated into a
generic platform and specific parts on top. Sometimes, there
is also a hybrid way: Platforms like Twitter and Facebook
were initially conceived as closed systems, but transformed into
platforms over time. Thus, successful Big Data systems may
need to address challenges known from variability management
(e.g., [21]) or the design of long-lasting systems.

Runtime Adaptability and Platform Independence (AR9).
Platform-independent development has long been a challenge
in software engineering, and there is still no satisfactory
solution some 15 years after Model-Driven Architecture (MDA)
was proposed. The solution has not become any better for
Cloud environments in which Big Data applications are fre-
quently deployed. On the contrary: vendor-specific tools and
hence the fear of vendor lock-in are a common problem in
this context. Thus, the DICE project [16], e.g., envisages Big
Data application models that are technology-agnostic.

Cloud computing marketing and the need to cope with
varying data loads have led to another desire, namely the ability
to make applications seamlessly scalable or “elastic”. From an



architecture point of view, this requires additional monitoring
capabilities, an adaptation engine capable of deriving insights
from monitoring, and means for automatically adapting the
system, e.g., by provisioning new hardware at run-time.

C. Quality Assurance
In the previous section, we focused on the construction of

Big Data systems. Now we target the follow-up question: How
to ensure the quality of such a system? As quality assurance is
a crosscutting challenge, we have condensed aspects regarding
testing, usability, and data quality in the following.

Challenging Visualization and Explainability of Results
(QA1). As discussed in the literature [25], visualization of large
amounts of data, in particular with high dimensionality (as it
comes from complex or heterogeneous data sets), is notoriously
hard [9]. Here, finding the right combination of dimension and
resolution for result visualizations is important, as it enables
the user to derive insights and, in turn, to assess the validity of
the results. Real-time interaction with visualizations—such as
changing the time interval of the displayed data or changing
the displayed dimensions—can help users understand the data,
but can also provide feedback on performance issues (cf.
PM6) or increase system complexity (cf. AR6). Even if the
analysis results are presented in an understandable way, the
detailed process of how an analysis result was produced might
neither be easy to grasp nor easy to trace even for experts.
This becomes worse if decisions are made, for instance, by
artificial intelligence approaches such as deep learning. Hence,
trustworthiness and understandability of data, processing, and
analysis results is a particular challenge [26] that is strongly
interrelated with engineering the system.

Non-Intuitive Notion of Consistency (QA2). Because Big
Data systems may trade consistency for availability in a
network partition situation (cf. AR7) or for performance in
general (cf. PM6), “eventual consistency” may be a feasible
resort. However, (temporary) inconsistency can be confusing
to users and quality engineers alike, for example when updates
made to the data are not visible in subsequent requests. Here
the challenge is to handle (in)consistency in an understandable
manner, e.g., by ensuring that a user at least sees his own recent
changes [3]; however, this may lead to performance issues (cf.
PM6) or increased system complexity (cf. AR6).

Complex Data Processing and Different Notions of Correct-
ness (QA3). Big Data processing is typically complex, e.g., due
to a lot of interdependencies among individual processing steps.
Hence, it is very difficult to determine whether an operation is
(in)correct, as the influence of a single operation on the overall
result may be comparatively small. Due to the complexity of
the data processing and the computations itself, it may even
be difficult to determine adequate test results. This leads to a
paradox where it is not possible to have precise data to test
against. Consequently, testing for plausibility becomes a typical
fallback. The challenge is to design simple control mechanisms
that function with a vague indication of correctness while still
recognizing incorrect implementations that are testable with
today’s testing capabilities.

High Hardware Requirements for Testing (QA4). Consid-
ering the main characteristics of Big Data systems (volume,
velocity, and variety), distributed processing and high work-
loads are imperative. In practice, this results in systems often
failing due to unexpected small issues such as a lack of storage
space. Thus, thorough testing of Big Data systems requires a
similar workload as will be used in the real system, and testing
also issues such as parallelization, performance, scalabality,
etc. For this purpose, an appropriate test system comparable to
the production system should be available [27]. However, in
practice this is often not possible as costs may be prohibitive
or a large enough cluster of machines is simply only available
for production. As a consequence, some part of the testing may
only be possible on the production hardware, which can delay
development. Even worse, testing a real-life workload (see
also QA5 below) may have to happen during actual operation,
hence requiring special precautions and risk management to
avoid impacting the production system. Moreover, testing a
dynamically scalable, but potentially immature system is a
severe financial risk when relying on on-demand cloud services.
Thus, testing Big Data systems in realistic settings is an actual
issue for product quality and quality assurance.

Difficult Generation of Adequate, High-Quality Data (QA5).
Testing Big Data systems requires realistic high-quality data
sets [28]. While large volumes of data may be created by
multiplying smaller data sets, terabytes of storage must be
provided for less regular data sets. Moreover, relying merely
on data for volume-related tests may be too restrictive to
cover all relevant phenomena of interest; i.e., data for the
other “Big Data Vs” such as variety and veracity (if necessary,
including different kinds of data such as documents or videos)
must also be provided. In summary, creating and handling
realistic application-specific test data sets covering all relevant
characteristics is a practical and methodological obstacle.

Lack of Debugging, Logging, and Error-Tracing Methods
(QA6). Due to their distributed nature, Big Data systems must
ultimately be tested in a distributed environment (cf. AR1,
QA3). However, the currently limited capabilities for dis-
tributed development tools and debugging [9] impose another
difficulty—developers using Big Data frameworks often have
to rely on distributed log files. This complicates processing,
and understanding the information may require merging the log
files and ultimately calls for advanced distributed debugging
and log visualization approaches, e.g., [29].

State Explosion in Verification (QA7). The use of growing
clusters for Big Data processing particularly increases the
complexity in applying verification approaches due to a combi-
natorical state explosion. Although symbolic model checking
or partial reduction techniques have led to a breakthrough in
practical verification, explicit state models are still used due
to their better verification capabilities [30]. So applicable veri-
fication approaches for distributed computing and, in addition,
for hybrid data processing (cf. PM4) are needed.

Ensuring Data Quality (QA8). For Big Data systems, the
metaphor “Data are the crude oil of the future” is often used.
Nevertheless, data on its own is only of limited significance;



it becomes meaningful only when its quality, e.g. in terms of
completeness or consistency, is proven. However, assessing data
quality in the context of Big Data is neither semantically nor
computationally trivial [31], in particular if data (of different
types) is aggregated or merged during processing.

D. Deployment & Operations
Big Data systems imply distributed data storage and process-

ing and often also come with requirements for long-running
and continuous operation. This makes both the provisioning
and the monitoring of the composed system challenging.

Complex “Elastic” Provisioning (DO1). As Big Data sys-
tems must be scalable on demand, they are often deployed to
a cloud environment. However, privacy, legal, and licensing
issues for commercial components or data (cf. PM5) may limit
the possible environments; in QualiMaster, e.g., data licenses
required processing on local infrastructures [32]. Flexible
“elastic” deployment mechanisms are a key part [19] to cope
with the complexity of distribution, component configurations,
and components that are similar but not fully substitutable,
as in polyglot persistence (cf. AR6). Additionally, virtual
machine and container technologies increase the complexity,
as they require tight integration of development, deployment,
and operation (DevOps). Moreover, long-running systems may
require migration of the system between alternative cloud
platforms over time, which is often limited or even prevented
by provider specific environments. Besides the impact of
moving data during migration, vendor lock-in situations may be
prevented through standardization efforts by all involved parties
or model-driven approaches that allow generating / migrating
the required functionality based on an abstract specification
(cf. AR4). In summary, provisioning Big Data systems is a
challenge covering technical, legal, and standardization issues.

Complex Monitoring (DO2). Monitoring of the operations
of Big Data systems needs to cover the involved resources,
the processing, and the processed data [33]. To some degree,
Big Data frameworks already include monitoring mechanisms
and provide dashboards (e.g., Apache Storm) that enable the
data engineer to oversee and optimize operations. Typically,
existing solutions are not comprehensive; e.g., in [34], [35],
further mechanisms were integrated to provide an overview of
the relevant system state, including the underlying hardware
and operating system. Moreover, the metrics used (cf. QA8) are
usually neither standardized [34], [36] nor comparable across
different frameworks in a cluster. Thus, encompassing, flexible,
and low overhead monitoring of Big Data systems is an open
issue, but also a hurdle for advanced processing approaches
involving, e.g., self-adaptation (cf. AR9).

E. Summary
In this section, we will summarize the insights gained from

the previous sections with a special focus on cross-cutting
concerns that may have an impact on multiple stages or
activities of the software development process.

Explorative Development Style (S1). Various questions that
directly influence the success of a project are likely not to be

answered during the planning of the system due to unclear
requirements or immature tools and frameworks (PM1, PM2,
AR3). Thus, the development process is highly exploratory
and new requirements as well as design or even architectural
decisions may occur at any time. Consequently, urgent changes
may frequently impact all development activities, meaning that
appropriate methods are necessary to deal with potentially
high-impact changes. While exploratory processes have been a
research objective in the agile and requirements community for
some time, there still exists the need for further work in this
direction, especially when it comes to software architecture.

Big Data Idiosyncrasies (S2). Avoiding the need for locking
data under heavy write loads is one of the central hallmarks
of a scalable architecture, which often comes at the price of
sacrificing hard consistency constraints among multiple nodes
or multiple persistences (cf. AR7, QA2). For example, in
eventual consistency, replicated or redundant data is allowed
to be inconsistent during certain time intervals; however,
the data is guaranteed to reach a consistent state at some
point. Another dimension of consistency exists among different
computation paths in the system, e.g., between streaming and
batch processing in a Lambda Architecture. Here, approximate
results are calculated on incoming streaming data; these results
are known to be overwritten by an exact result from a batch
computation on the whole body of data at a later point. A
natural extension of this concept is when multiple computation
paths calculate related insights from different data based on
polyglot persistence. This becomes particularly challenging
when some of the paths may fail, e.g., due to software failures
or incomplete data, and reintegration is necessary. While such
weaker notions of consistency have become common in recent
years [22], to our knowledge there is a lack of research on how
to systematically plan and construct solutions that guarantee an
eventually consistent state in complex system configurations.

Security (S3). Data security and privacy is a challenging
aspect in the engineering of Big Data systems because the
very purpose is to collect and analyze as much data of value
as possible. Recent frameworks hence often sacrifice security
for performance; i.e., they delegate security mechanisms to
the environment so that a single successful attack can expose
a large amount of data at once. Since a Big Data system is
usually composed of a multitude of heterogeneous systems,
such as database systems, or analysis middleware, developers
need to consider all of the individual systems’ attack vectors.
The variety of the data requires additional care when importing
and analyzing data from external sources, such as users, to
prevent injection attacks, e.g., when interpreting documents
that contain executable scripts. Privacy concerns (cf. PM5) are
amplified because Big Data is usually comprised of a multitude
of data sources for which it is unclear, whether a combination
allows inferring personal information.

Hardware Availability (S4). For Big Data systems, the
hardware is different than for traditional information systems
since a larger amount of hardware is required to operate the
final system. Nevertheless, various roles in the development
process, such as algorithm designers, deployment specialists,



and testers, need to work with large clusters on a regular basis
in order to evaluate and optimize their work. So managing
the availability of hardware resources is certainly an issue that
might influence project planning (cf. PM6, QA4).

Long-Term Operation (S5). The environments in which
Big Data systems are running and the systems themselves
are changing over time. These changes may be corrective, if
the implemented software system needs to be upgraded, or
adaptive, when the circumstances, e.g., available computing
needs or capabilities, change or additional data sources are to
be integrated. In particular, this includes the need for elasticity
(cf. DO1). Such changes require tactics for non-disruptive
operation of a system because it is not feasible to buffer the
incoming data over extended periods of time and replay it into
the system. Nowadays, such non-disruptive runtime operations
are often not available. One example: although version 0.95 of
Apache Storm allows changing the resources of a processing
pipeline at runtime, this causes a complete restart of the data
processing, implying a downtime of up to several minutes
until the re-deployed algorithms are ready to run. Realizing an
encompassing set of relevant runtime stabilization mechanisms
for Big Data processing is an architectural challenge requiring
the integration of further tactics, such as replication, which
are not commonly provided by current frameworks. Applying
these tactics, either as manual administrative operations or
automatically in terms of a self adaptive system, requires
observing a set of reliable metrics delivered by monitoring
(DO2). Moreover, planning automated actions (AR9) to sustain
the operations in Big Data processing, e.g., along the data flow
in stream processing [32], [37], is subject to ongoing work.

The underlying configuration of the system can be an issue
for long-term operations as well. Installing current Big Data
systems typically includes configuring various frameworks,
such as Apache Spark, Apache Cassandra, or Apache Kafka.
These frameworks in isolation can already have a large number
of configuration options and runtime parameters, which might
have an unknown effect on the required resources and on
thir performance. Moreover, there is often little or even no
documentation on the installation of framework combinations,
e.g., regarding which versions are known to work together
or how frameworks affect each other in terms of stability
or performance. In addition, configuration settings across
frameworks must be done consistently, or services must be
started in the right sequence to achieve stable cluster operations.
In particular, this involves determining the required resources
initially (cf. PM6) or over time. Some of the basic problems
could be solved through a more standardized, e.g., architecture-
driven, documentation, which would allow clashes between
assumptions to become obvious at an early stage. Nowadays,
optimizing the various configuration settings and files for differ-
ent frameworks involved in a Big Data system is a manual task
for an administrator. However, overseeing the configuration
space and finding an optimal configuration requires systematic
modification of the settings, benchmark runs, and experiment
result analysis. Such an exploration of the configuration space
could also be done automatically and optimized with the help

of Machine Learning techniques. Nevertheless, a necessary
prerequisite for this is formalized configuration knowledge, so
that impossible and undesired combinations are not analyzed
by such a configuration optimizer.

I V. R E L AT E D W O R K

Although a significant body of work has been published
on Big Data systems, it is mostly on technical solutions for
particular problems and not on the specific challenges in Big
Data Software Engineering. Due to space restrictions, we only
provide a broad overview of the few publications naming such
challenges and briefly link them to our work where similarities
and other points of contact exist.

In [38], a summary of interviews with three industrial Big
Data experts is presented, which include challenges as well
as do’s and don’ts from their personal experience. Related
challenges target privacy (PM5), quality trade-offs (PM6),
data consistency (AR7, S2), state management (AR7, S5),
componentization (AR8), adaptivity (AR9, S5), scalability (S5)
or user understanding (QA1). As the authors did not focus on
any systematic identification and classification, they merely
mention a sub-set of the challenges presented in our work.
This is similar to the challenges, such as high and write-heavy
workloads (AR7, S2) or required elasticity (DO1), listed by [19]
or the NESSI consortium [39] (e.g., AR2, AR4, QA7, or DO2),
which are intended as broad starting points as well. The authors
of [40] highlight some challenges, found, e.g., in S3, PM3, or
AR5 of our list, alongside the classic waterfall phases.

Chen et al. discuss [41] challenges such as interdisciplinarity
(PM3), confidentiality (PM5), and scalability (S5), but also sev-
eral data-related topics such as data acquisition (QA5). Jagadish
et al.’s [1] list includes privacy and data ownership (PM5),
timeliness (PM6), interdisciplinarity (PM3), and visualization
of result data (QA1). Moreover, there is some overlap in our
engineering challenges with [41] as well as [1], although we
do not focus on specific data (processing) challenges as these
works do. Madhavji et al. [27] list some example research
challenges for software development, e.g. the need for more
specific requirements methods (PM1) or the currently limited
knowledge of Big Data reference architectures (PM4, AR2).

Moreover, there is related work with a rather specific focus.
Among them, Heinrich et al. [14] discuss limitations and
challenges for performance prediction for Big Data systems
(subsumed by PM6). Fan et al. [42] discuss challenges of Big
Data analysis from a statistical point of view, while Kaisler et
al. [43] discuss some general issues related to software engi-
neering, including unclear requirements (PM1), updating the
system (S5), storage trade-offs, data completeness, quality and
quantity trade-offs (PM6), data ownership, legal compliance
(PM5), security (S3), scalability (S5), and distribution (AR1).

In summary, although there is quite a body of work mention-
ing "Big Data challenges", to the best of our knowledge, there
exists no work yet to date that focuses on a comprehensive
in-depth collection of development challenges for Big Data
systems from a software engineering perspective.



V. C O N C L U S I O N A N D F U T U R E W O R K

In this paper, we presented 26 challenges that are unique or at
least significantly exacerbated in the context of developing Big
Data systems. We collected and classified the challenges using
a systematic collaborative process and categorized them along
software development phases as follows: 7 Project & Require-
ments Management challenges, 9 Architecture & Development
challenges, 8 Quality Assurance challenges, 2 Deployment &
Operations challenges, and 5 cross-cutting challenges. This
initial collection may not yet be complete; however, from our
point of view, it provides the first broad overview of Big-
Data-related challenges in software engineering. Thus, it might
be used as a starting point for further research in this field.
Although some of the issues listed in this paper are likely
to be solved by the expected development of the field over
time, a lot of research will be needed to solve the remaining
immanent challenges. Moreover, there is a need for detailing
and extending the challenges reported here in a more verbose
form. Based on this, we aim to provide a long-term research
agenda that shall help to address the immanent challenges
systematically, e.g., through architectural patterns and tactics
for the development of Big Data systems.
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